北京大学期刊网　|　作者　　审稿人　　编委专家　　工作人员 首页　  |  　关于　  |  　浏览　  |  　投稿指南　  |  　新闻公告
 数学进展
 研究论文
 非线性 Kirchhoff 型波动方程解的真空隔离 Vacuum Isolating of Solutions for the Nonlinear Wave Equations of Kirchhoff Type 宋志华 SONG Zhihua 华北水利水电学院数学与信息科学学院, 郑州, 河南, 450011 College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450011, P. R. China 收稿日期: 2011-04-11 出版日期: 2013-08-25 DOI: 10.11845/sxjz.20130410b
 164 浏览 引用导出
0
/   /   推荐
 摘要 本文研究初边值问题 $$\left\{\!\!\!\begin{array}{lll} u_{tt}+\|A^{\frac{1}{2}}u\|^{2\gamma}Au+u_t=|u|^{p-1}u,x\in\Omega,\ t>0,\nonumber u(x,0)=u_0,\ u_t(x,0)=u_1,\nonumber\\ u=0,x\in\partial\Omega,\ t\geq 0\nonumber \end{array}\right. 其中\Omega是 \mathbb{R}^N中的有界区域, A=-\Delta是定义在A=-\Delta上的Laplace算子.利用位势井方法得到了解的存在性定理, 并且证明了当e\in(0,d)时,以E(0)\in(0,e]为初始能量的所有解只能位于空间D(A^{\frac{1}{2}})中小球的外部和大球的内部, 其中d=\frac{p-2\gamma-1}{(2\gamma+2)(p+1)}\big(\frac{1}{C_\ast^{p+1}}\big)^{\frac{2\gamma+2}{p-1-2\gamma}}, C_\ast是空间D(A^{\frac{1}{2}})到L^{p+1}(\Omega)的嵌入常数. 关键词 ： Kirchhoff 型波动方程, 真空隔离, 位势井 Abstract：In this paper, the initial boundary value problem$$\left\{\!\!\!\begin{array}{lll} u_{tt}+\|A^{\frac{1}{2}}u\|^{2\gamma}Au+u_t=|u|^{p-1}u,x\in\Omega,\ t>0,\nonumber\\ u(x,0)=u_0,\ u_t(x,0)=u_1,\nonumber u=0,x\in\partial\Omega,\ t\geq 0\nonumber \end{array}\right.is studied, where $\Omega\subset \mathbb{R}^N$ is a bounded domain, $A=-\Delta$ is the Laplace operator with the domain $D(A)=H^{2}(\Omega)\cap H_{0}^{1}(\Omega)$. By using the potential well method, one obtains some existence theorems of solutions, and proves that for any given $e\in(0,d)$ all solutions with initial energy $E(0)\in(0,e]$ can only lie either inside of some smaller ball or outside of some bigger ball of space $D(A^{\frac{1}{2}}),$ where $d=\frac{p-2\gamma-1}{(2\gamma+2)(p+1)}\big(\frac{1}{C_\ast^{p+1}}\big)^{\frac{2\gamma+2}{p-1-2\gamma}}$ and $C_\ast$ is the imbedding constant from $D(A^{\frac{1}{2}})$ into $L^{p+1}(\Omega)$. Key words： vacuum isolating    potential well 基金资助:This work is supported by NSFC (No. 11271336). 通讯作者: songzhihua@ncwu.edu.cn
 No related articles found!
Viewed
Full text

Abstract

Cited

Discussed