北京大学期刊网　|　作者　　审稿人　　编委专家　　工作人员 首页　  |  　关于　  |  　浏览　  |  　投稿指南　  |  　新闻公告
 数学进展
 研究论文
 一类Tornheim型双$\bm L$函数的估计 Evaluation of a Class of Double $\bm L$-values of Tornheim's Type 田清1,丁丽萍1, 梅永刚2 TIAN Qing1,*,DING Liping1,MEI Yonggang2 1.西安建筑科技大学理学院, 西安, 陕西, 710055; 2. 西安邮电学院理学院, 西安, 陕西, 710121 1.School of Science, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055,P. R. China; 2.Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121, P. R. China 收稿日期: 2011-04-13 出版日期: 2013-10-25 DOI: 10.11845/sxjz.20130509
 52 浏览 引用导出
0
/   /   推荐
 摘要 Tornheim型双$L$函数定义如下: \begin{equation*} \mathcal{L}(k,l,d;\chi,\psi)=\sum^{\infty}_{m,n=1frac{\chi(m)\psi(m+n)}{m^kn^l(m+n)^d}, \end{equation*}其中$\chi$, $\psi$为Dirichlet特征, $k,l,d \in \mathbb{Z}$ 且 $k+d> 1$, $l+d> 1$, $k+l+d>2$. 本文给出了当 $\chi, \psi$为Dirichlet原特征, 并且满足$\chi(-1)\psi(-1)=(-1)^{k+l+d+1}$时计算 $\mathcal{L}(k,l,d; \chi,\psi)$精确结果的一种方法, 推广了[Tsumura, H., Bull. Austral. Math. Soc., 2004, 70(2): 213-221]的计算结果. 关键词 ： Tornheim型双$L$函数,  双$L$函数,  估值公式 Abstract：The double $L$-series of Tornheim's type are defined as \begin{equation*} \mathcal{L}(k,l,d;\chi,\psi)=\sum^{\infty}_{m,n=1frac{\chi(m)\psi(m+n)}{m^kn^l(m+n)^d} \end{equation*} for Dirichlet characters $\chi, \psi$, where $k,l,d \in \mathbb{Z}$ with $k+d> 1$, $l+d> 1$, $k+l+d>2$. In this paper, we show that the values of $\mathcal{L}(k,l,d; \chi,\psi)$ can be evaluated for any primitive Dirichlet character $\chi, \psi$, when $\chi(-1)\psi(-1)=(-1)^{k+l+d+1}$. Our method also provides a way to calculate them explicitly. This generalizes the results of [Tsumura, H., Bull. Austral. Math. Soc., 2004, 70(2): 213-221]. Key words： double $L$-value    evaluation formula 基金资助:Supported by the Youth Technology Fund of Xi'an University of Architecture and Technology (No. QN1138, No. QN1134, No. QN1135) and the Natural Science Foundation of the Education Department of Shaanxi Province of China (No. 2013JK1190).
 No related articles found!
Viewed
Full text

Abstract

Cited

Discussed