Please wait a minute...
北京大学期刊网 | 作者  审稿人  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展 - 2016, Vol. 45(2): 195-205
研究论文
Morita context环的根
Radicals of Morita Context Rings

王尧1,任艳丽2,
WANG Yao1, REN Yanli2

1. 南京信息工程大学数学与统计学院, 南京, 江苏, 210044;
2. 南京晓庄学院数学与信息技术学院, 南京, 江苏, 211171
1. School of Mathematics and Statistics,Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, P. R. China;
2. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 211171, P. R. China

收稿日期: 2014-07-22
2016, Vol. 45(2): 195-205
DOI: 10.11845/sxjz.2014113b


PDF
[313 KB]
1065
下载
630
浏览

引用导出
E-mail这篇文章
E-mail提醒
RSS订阅

摘要 对于一个Morita context环$T =\left (\begin{smallmatrix}R & N \\ M & S \end{smallmatrix} \right )$, 给出若干根在某些条件下的结构.
Abstract:For a Morita context ring $T =\left (\begin{smallmatrix} R & N \\ M & S \end{smallmatrix}\right )$, we give the structure of several radicals of rings under some conditions.
PACS:  O153.3  
基金资助:国家自然科学基金(No. 41275117)和江苏省自然科学基金(No. BK20141476).
[1] Amitsur, S.A., Rings of quotients and Morita contexts, J. Algebra, 1971, 17(2): 273-298.
[2] Beidar, K.I., Fong, Y. and Puczylowski, E.R., Polynomial rings over nil rings cannot be homomorphically mapped onto rings with nonzero idempotents, J. Algebra, 2001, 238(1): 389-399.
[3] Birkenmeier, G.F., Heatherly, H.E. and Lee, E.K., Completely prime ideals and associated radicals,In: Ring Theory (Jain, S.K. and Rizvi, S.T. eds.), Singapore: World Scientific, 1993, 102-129.
[4] Chen, Y.Q., Fan, Y. and Hao, Z.F., Ideals in Morita rings and Morita semigroups, Acta Math. Sin., Engl. Ser., 2005, 21(4): 893-898.
[5] Ferrero, M. and Puczylowski, E.R., On rings which are sums of two subrings, Arch. Math. Basel, 1989, 53(1): 4-10.
[6] Ferrero, M. and Puczylowski, E.R., The singular ideal and radicals, J. Aust. Math. Soc., 1998, 64(2): 195-209.
[7] Gardner, B.J., Radical classes of regular rings with Artinian primitive images, Pacific J. Math., 1982, 99(2): 337-349.
[8] Guo, X.Z., On the periodic radical of a ring, Canad. Math. Bull., 1995, 38(2): 215-217.
[9] Handelman, D. and Lawrence, J., Strongly prime rings, Trans. Amer. Math. Soc., 1975, 211: 209-223.
[10] Hwang, S.U., Jeon, Y.C. and Lee, Y., Structure and topological conditions of NI rings, J. Algebra, 2006, 302(1): 186-199.
[11] Jaegermann, M., Morita contexts and radicals, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1972, 20(8): 619-623.
[12] Khatri, C.G. and Mitra, S.K., Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 1976, 31(4): 579-585.
[13] Nicholson, W.K. and Watters, J.F., Normal radicals and normal classes of rings, J. Algebra, 1979, 59(1): 5-15.
[14] Poole, D.G. and Stewart, P.N., Classical quotient rings of generalized matrix rings, Int. J. Math. Math. Sci., 1995, 18(2): 311-316.
[15] Rege, M.B., On von Neumann regular rings and SF-rings, Math. Japonica, 1986, 31(6): 927-936.
[16] Ren, Y.L. and Wang, Y., Nilpotency for Morita context rings, Math. Pract. Theory, 2007, 27(9): 148-152 (in Chinese).(任艳丽, 王尧, Morita Context 环的幂零性, 数学的实践与认识, 2007,27(9): 148-152.)
[17] Szàsz, F.A., Radicals of Rings, New York: John Wiley \& Sons, 1981.
[18] Wang, Y. and Ren, Y.L., Morita context rings with a pair of zero homomorphisms (I), J. Jilin Univ. Sci., 2006, 44(3): 318-324 (in Chinese).(王尧, 任艳丽, 具有一对零态射的Morita Context 环(I), 吉林大学学报(理学版), 2006, 44(3): 318-324.)
[1] 向跃明. 几乎半正则环[J]. 数学进展, 2018, 47(1): 56-64.
[2] 许庆兵,张孔生, 王正萍. 形式矩阵环上投射模的对偶基及其应用[J]. 数学进展, 2017, 46(4): 557-562.
[3] 陈焕银. 交换局部环上强$J$-clean矩阵[J]. 数学进展, 2017, 46(2): 212-220.
[4] 李长京, 陈全园. 环上Lie可乘映射的可加性[J]. 数学进展, 2017, 46(1): 82-90.
[5] 陈新红,卢明. 高维丛范畴中的丛倾斜对象[J]. 数学进展, 2016, 45(5): 641-651.
[6] 郭双建,王圣祥. 偏 Doi-Hopf-模上Rafael定理的应用[J]. 数学进展, 2016, 45(5): 652-664.
[7] 陈益智,何勇,李勇华. 分配夹心半环与加法完全{J}^{*}$}-单半环[J]. 数学进展, 2016, 45(5): 665-678.
Viewed
Full text


Abstract

Cited

  Discussed   
首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录


© 2015-2017 北京大学图书馆 .