北京大学期刊网　|　作者　　审稿人　　编委专家　　工作人员 首页　  |  　关于　  |  　浏览　  |  　投稿指南　  |  　新闻公告
 数学进展 - 2016, Vol. 45(2): 289-298
 研究论文
 巴拿赫空间中广义I型一致不变凸条件下带锥约束的向量优化问题 Vector Optimization With Cone Constraints Under Generalized Type I Univexity in Banach Spaces 焦合华1,刘三阳2 JIAO Hehua1, LIU Sanyang2 1. 长江师范学院数学与统计学院, 重庆, 408100; 2. 西安电子科技大学数学与统计学院, 西安, 陕西, 710071 1. School of Mathematics and Statistics,Yangtze Normal University, Chongqing, 408100, P. R. China;2. School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi, 710071, P. R. China 收稿日期: 2014-07-24 出版日期: 2016-03-10 2016, Vol. 45(2): 289-298 DOI: 10.11845/sxjz.2014114b
 PDF [176 KB] 950 下载 490 浏览 引用导出
0
/   /   推荐

Abstract：In this paper, we introduce new concepts of $\alpha$-d-type I univex functions between Banach spaces for a vector optimization problem with cone constraints. We establish some Karush-Kuhn-Tucker type sufficient optimality conditions for a feasible point to be a weakly efficient (or an efficient) solution. Moreover, a Mond-Weir type dual is formulated and weak, strong and converse duality results are obtained under various types of $\alpha$-d-type I univexity assumptions.
 PACS: O221.6
 [1]Antczak, T., Optimality conditions and duality for nondifferentiable multiobjective programming problems involving d-r-type I functions, J. Comput. Appl. Math., 2009, 225(1): 236-250. [2]Batista dos Santos, L., Osuna-Gòmez, R., Rojas-Medar, M.A. and Rufiàn-Lizana, A., Preinvex functions and weak efficient solutions for some vectorial optimization problem in Banach spaces, Comput. Math. Appl., 2004, 48(5/6): 885-895.[3] Bazaraa, M.S., Sherali, M.S. and Shetty, C.M., Nonlinear Programming: Theory and Algorithms, 3rd Ed., New York: Wiley, 2006.[4]Chen, J.W., Cho, Y.J., Kim, J.K. and Li, J., Multiobjective optimization problems with modified objective functions and cone constraints and applications, J. Global Optim., 2011, 49(1): 137-147. [5]Craven, B.D., Control and Optimization, London: Chapman and Hall, 1995.[6] Hachimi, M. and Aghezzaf, B., Sufficiency and duality in nondifferentiable multiobjective programming involving generalized type I functions, J. Math. Anal. Appl., 2006, 319(1): 110-123. [7]Hanson, M.A. and Mond, B., Necessary and sufficient conditions in constrained optimization, Math. Program., 1987, 37(1): 51-58. [8]Hanson, M.A., Pini, R. and Singh, C., Multiobjective programming under generalized type-I invexity, J. Math. Anal. Appl., 2001, 261(2): 562-577. [9]Jayswal, A., On sufficiency and duality in multiobjective programming problem under generalized $\alpha$-type I univexity, J. Global Optim., 2010, 46(2): 207-216. [10]Jayswal, A. and Kumar, R., Some nondifferentiable multiobjective programming under generalized d-V-type-I univexity, J. Comput. Appl. Math., 2009, 229(1): 175-182. [11]Kuk, H. and Tanino, T., Optimality and duality in nonsmooth multiobjecive optimization involving generalized type-I functions, Comput. Math. Appl., 2003, 45(10/11): 1497-1506. [12]Mangasarian, O.L., Nonlinear Programming, New York: McGraw-Hill, 1969. [13] Mishra, S.K. and Noor, M.A., Some nondifferentiable multiobjective programming problems, J. Math. Anal. Appl., 2006, 316(2): 472-482.[14] Mishra, S.K., Wang, S.Y. and Lai, K.K., Nondifferentiable multiobjective programming under generalized d-univexity, European J. Oper. Res., 2005, 160(1): 218-226.[15] Mond, B. and Weir, T., Generalized concavity and duality, In: Generalized Concavity Optimization and Economics (Schaible, S. and Ziemba, W.T. eds.), New York: Academic Press, 1981, 263-280.[16]Noor, M.A., On generalized preinvex functions and monotonicities, J. Ineq. Pure and Appl. Math., 2004, 5(4): Article ID 110, 20 pages.[17] Slimani, H. and Radjef, M.S., Nondifferentiable multiobjective programming under generalized \$d_{I-invexity, European J. Oper. Res., 2010, 202(1): 32-41.[18]Suneja, S.K., Srivastava, M.K., Optimality and duality in nondifferentiable multiobjective optimization involving d-type I and related functions, J. Math. Anal. Appl., 1997, 206(2): 465-479.[19]Yu, G.L. and Liu, S.Y., Some vector optimization problems in Banach spaces with generalized convexity, Comput. Math. Appl., 2007, 54(11/12): 1403-1410.[20]Zhang, W.Y., Xu, S. and Li, S.J., Necessary conditions for weak sharp minima in cone-constrained optimization problems, Abstr. Appl. Anal., 2012, 2012: Article ID 909520, 11 pages.
 No related articles found!
Viewed
Full text

Abstract

Cited

Discussed