Please wait a minute...
 北京大学期刊网　|　作者　　审稿人　　编委专家　　工作人员 首页　  |  　关于　  |  　浏览　  |  　投稿指南　  |  　新闻公告
 数学进展 - 2016, Vol. 45(2): 190-194
 研究论文
 关于k重unitary完全数 On Unitary \mbox{\boldmath $k$}-perfect Numbers 汤敏1,杨全会2 TANG Min1, YANG Quanhui2 1.安徽师范大学数学计算机科学学院, 芜湖, 安徽, 241003; 2.南京信息工程大学数学与统计学院, 南京, 江苏, 210044 1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu, Anhui, 241003, P. R. China; 2. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044,P. R. China 收稿日期: 2014-09-01 出版日期: 2016-03-10 2016, Vol. 45(2): 190-194 DOI: 10.11845/sxjz.2014133b
 PDF [137 KB] 998 下载 803 浏览 引用导出
0
/   /   推荐

Abstract：For a positive integer $N$, we call $d$ a unitary divisor of $N$ if $d\mid N$ and $(d,\frac{N}{d})=1$.Let $k\geq 2$ be an integer, and let $\sigma^\ast(N)$ denote the sum of the unitary divisors of $N$. We call $N$ a unitary $k$-perfect number if $\sigma^\ast(N)=kN$. In this paper, we give some necessary properties of them.
 PACS: O156.1
 [1] Dusart, P., The $k$-th prime is greater than $k(\ln k+\ln\ln k-1)$ for $k\ge 2$, Math. Comp., 1999, 68(225): 411-415.[2] Goto, T., Upper bounds for unitary perfect numbers and unitary harmonic numbers, Rocky Mountain J. Math., 2007, 37(5): 1557-1576.[3] Graham, S.W., Unitary perfect numbers with squarefree odd part, Fibonacci Quart., 1989, 27(4): 317-322.[4] Hagis, P.Jr., Lower bounds for unitary multiperfect numbers, Fibonacci Quart., 1984, 22(2): 140-143.[5] Harris, V.C. and Subbarao, M.V., Unitary multiperfect numbers, Notices Amer. Math. Soc., 1972, 21(4): A-435.[6] Subbarao, M.V. and Warren, L.J., Unitary perfect numbers, Canad. Math. Bull., 1966, 9(2): 147-153.[7] Wall, C.R., The fifth unitary perfect number, Canad. Math. Bull., 1975, 18(1): 115-122.[8] Wall, C.R., New unitary perfect numbers have at least nine odd components, Fibonacci Quart., 1988, 26(4): 312-317.[9] Yuan, P.Z., An upper bound for the number of odd multiperfect numbers, Bull. Aust. Math. Soc., 2014, 89(1): 1-4.[10] Yuan, P.Z. and Zhang, Z.F., Addition to `an upper bound for the number of odd multiperfect numbers', Bull. Aust. Math. Soc., 2014, 89(1): 5-7.
 [1] 朱杰, 廖群英. 方程${{ Z(n)=\varphi_{e}({\rm SL}(n))}}$的可解性[J]. 数学进展, 2019, 48(5): 541-554. [2] 陈世强, 汤敏. 广义调和数的5进制赋值[J]. 数学进展, 2018, 47(6): 953-959. [3] 陈凤娟. 关于丢番图方程 $(na)^x+(nb)^y=(nc)^z$[J]. 数学进展, 2018, 47(3): 388-392. [4] 刘鑫媛,方金辉. 关于加法补集的一个注记[J]. 数学进展, 2016, 45(4): 533-536. [5] 贾丽蕊, 张勇, 蔡天新. 关于二项式系数的若干新同余式[J]. 数学进展, 2018, 47(4): 525-542.
Viewed
Full text

Abstract

Cited

Discussed

 © 2015-2017 北京大学图书馆 .