Please wait a minute...
北京大学期刊网 | 作者  审稿人  编委专家  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展 - 2016, Vol. 45(6): 919-931
研究论文
广义框架的 G-对偶框架
G-dual Frames for Generalized Frames

李登峰1, 李艳婷2
LI Dengfeng1, *, LI Yanting2

1. 武汉纺织大学数学与计算机学院, 武汉, 湖北, 430200;
2. 澳门大学科技学院数学系, 氹仔岛, 澳门, 999078
1. School of Mathematics and Computer, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China;
2. Department of Mathematics, Faculty of Science and Technology, University of Macau, Taipa, Macau, 999078, P. R. China

收稿日期: 2015-11-23
出版日期: 2016-11-10
2016, Vol. 45(6): 919-931
DOI: 10.11845/sxjz.2015204b


PDF
[184 KB]
647
下载
264
浏览

引用导出
0
    /   /   推荐

摘要 本文首先提出了广义框架的G-对偶框架概念;其次给出了广义框架的G-对偶框架的性质和稳定性结果; 最后建立了广义框架的G-对偶框架 的特征刻画.
Abstract:In this paper, the concept of G-dual frames for a generalized frame is first presented, and then the properties and stability results of G-dual frames for generalized frames are given. Finally, a characterization of G-dual frames for a generalized frame is established.
PACS:  O174.2  
[1] Arioli, M., Duff, I. and Ruiz, D., Stopping criteria for iterative solvers, SIAM J. Matrix Anal. Appl., 1992, 13(1): 138-144.
[2] Baker, A.H., Jessup, E.R. and Kolev, Tz.V., A simple strategy for varying the restart parameter in GMRES($m$), J. Comput. Appl. Math., 2009, 230(2): 751-761.
[3] Ben-Israel, A. and Greville, T.N.E., Generalized Inverses: Theory and Applications, New York: Wiley-Interscience, 1974.
[4] Brown, P.N., A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Stat. Comput., 1991, 12(1): 58-78.
[5] Brown, P.N. and Hindmarsh, A.C.,Reduced storage matrix methods in stiff ODE systems, Appl. Math. Comput., 1989, 31: 40-91.
[6] Brown, P.N. and Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Stat. Comput., 1990, 11(3): 450-481.
[7] Cao, Z.H., On a deflation method for the symmetric generalized eigenvalue problem, Linear Algebra Appl., 1987, 92: 187-196.
[8] Cao, Z.H., Total generalized minimum backward error algorithm for solving nonsymmetric linear systems, J. Comput. Math.,1998, 16(6): 539-550.
[9] 戴华, 矩阵论, 北京: 科学出版社, 2001.
[9] Golub, G.H. and Van Loan, C.F., Matrix Computations (2nd Ed.), Baltimore, MD: John Hopkins Univ. Press, 1990.
[10] Higham, D.J. and Higham, N.J., Backward error and condition of structured linear systems, SIAM J. Matrix Anal. Appl., 1992, 13(1): 162-175.
[11] Huhtanen, M. and Per\"am\"aki, A., Orthogonal polynomials of the R-linear generalized minimal residual method, J. Approx. Theory}, 2013, 167(3): 220-239.
[12] Jia, Z.X., On IOM($q$): the incomplete orthogonalization method for large unsymmetric linear systems, Numer. Linear Algebra Appl., 1996, 3(6): 491-512.
[13] Kasenally, E.M., GMBACK: a generalized minimum backward error algorithm for nonsymmetric linear systems, SIAM J. Sci. Comput., 1995, 16(3): 698-719.
[14] Kasenally, E.M. and Simoncini, V., Analysis of a minimum perturbation algorithm for nonsymmetric linear systems, SIAM J. Numer. Anal., 1997, 34(1): 48-66.
[15] 李晓爱, 陈玉花, 张耘, 王新苹, 求解大型稀疏线性方程组的Krylov子空间方法的发展, 科技导报, 2013, 11: 68-73.
[16] Liesen, J. and Tichy, P., The field of values bound on ideal GMRES, 2012, arXiv: 1211.5969v1.
[17] 柳有权, 尹康学, 吴恩华, 大规模稀疏线性方程组的GMRES-GPU快速求解算法, 计算机辅助设计与图形学学报, 2011, 23(4): 553-560.
[18] Ma, X.F., An overview of recent developments and applications of the GMRES method, Pure Math., 2013, 3: 181-187.
[19] Najafi, H.S. and Zareamonghaddam, H., A new computational GMRES method, Appl. Math. Comput., 2008, 199(2): 527-534.
[20] Saad, Y., Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp., 1981, 37(155): 105-126.
[21] Saad, Y., Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 1984, 5(1): 203-228.
[22] Saad, Y. and Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 1986, 7(3): 856-869.
[24] 史荣昌, 魏丰, 矩阵分析, 北京: 北京理工大学出版社, 2010.
[23] Sterck, H.D., Steepest descent preconditioning for nonlinear GMRES optimization, Numer. Linear Algebra Appl., 2013, 20(3): 453-471.
[24] Stewart, G.W. and Sun, J.-G., Matrix Perturbation Theory, New York: Academic Press, 1990.
[25] Sun, L., Wang, X.H. and Guan, Y., IMinpert: an incomplete minimum perturbation algorithm for large unsymmetric linear systems, Numer. Math. J. Chinese Univ., 2007, 16(4): 300-312.
[26] Van Huffel, S. and Vandewalle, J., The Total Least Squares Problem: Computational Aspects and Analysis, Frontiers in Applied Mathematics, Vol. 9, Philadelphia, PA: SIAM, 1991.
[29] 杨子胥, 高等代数习题解, 山东: 山东科学技术出版社, 2003.
[30] 袁亚湘, 孙文瑜, 最优化理论与方法, 北京: 科学出版社, 1997.
[1] 李澎涛, 孙文昌. 多分辨方法在Besov-Q型空间和Triebel-Lizorkin-Q型空间中的应用[J]. 数学进展, 2019, 48(5): 513-530.
[2] 默会霞, 王晓娟. 消失广义加权Morrey空间上的分数次积分算子[J]. 数学进展, 2019, 48(3): 302-314.
[3] 付艳玲, 张伟. 希尔伯特空间中近似标架的构造及扰动[J]. 数学进展, 2019, 48(2): 209-218.
[4] 李登峰,李艳婷. 可伸缩的广义框架[J]. 数学进展, 2019, 48(2): 219-228.
[5] 王松柏, 李朋. 加权耦合型空间上的多线性算子[J]. 数学进展, 2018, 47(6): 881-905.
[6] Ferit Gürbüz. 乘积广义局部Morrey空间上由多线性分数次积分算子生成的多重次线性算子和交换子[J]. 数学进展, 2018, 47(6): 855-880.
[7] 刘宗盛, 董新汉. 一类 Moran 测度的谱性[J]. 数学进展, 2018, 47(3): 441-447.
[8] 默会霞,薛红. 带变量核的分数次积分算子与局部Campanato函数生成的交换子在广义局部Morrey空间的有界性[J]. 数学进展, 2017, 46(5): 755-764.
[9] Ferit Gürbüz. 粗糙抛物次线性算子和交换子的抛物广义局部Morrey空间估计[J]. 数学进展, 2017, 46(5): 765-792.
[10] *吴小梅. 一类Hausdorff算子在Lebesgue空间上的最佳常数[J]. 数学进展, 2017, 46(5): 793-800.
[11] 赵 易, 周颂平. 可积性与实意义下的对数有界变差概念[J]. 数学进展, 2017, 46(3): 415-423.
[12] 刘 宇, 张 静. 与薛定谔算子相关的Riesz变换和交换子在加权Morrey空间上的有界性[J]. 数学进展, 2017, 46(3): 429-440.
[13] 王洪彬, 刘宗光, 傅尊伟. 变指标Herz型Hardy空间上分数次积分的有界性[J]. 数学进展, 2017, 46(2): 252-260.
[14] 李 敏, 李建林. 空间自仿测度下无限正交指数系存在的条件[J]. 数学进展, 2016, 45(3): 332-342.
[15] 蓝森华,张代清. 沿有限型的粗糙核奇异积分算子在乘积空间上的外插估计[J]. 数学进展, 2016, 45(2): 221-232.
Viewed
Full text


Abstract

Cited

  Discussed   
首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录


© 2015-2017 北京大学图书馆 .