Please wait a minute...
北京大学期刊网 | 作者  审稿人  编委专家  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展 - 2018, Vol. 47(1): 31-40
研究论文
关于哈密顿图和可迹图的一些充分条件
Some Sufficient Conditions on Hamiltonian and Traceable Graphs

周倩楠, 王力工, 卢勇
ZHOU Qiannan, WANG Ligong*, LU Yong

西北工业大学理学院应用数学系, 西安, 陕西, 710072
Department of Applied Mathematics, School of Science,Northwestern Polytechnical University, Xi'an, Shaanxi,710072, P. R. China

出版日期: 2018-01-25
2018, Vol. 47(1): 31-40
DOI: 10.11845/sxjz.2016042b


PDF
[260 KB]
379
下载
364
浏览

引用导出
0
    /   /   推荐

摘要 本文分别给出了二部图和一般图是Hamilton的或可迹的一些充分条件.
关键词 哈密顿的可迹的边数谱半径    
Abstract:In this paper, we give some sufficient conditions for bipartite graph and general graph to be Hamiltonian and traceable, respectively.
Key wordsHamiltonian    traceable    edge number    spectral radius
PACS:  O157.5  
通讯作者: E-mail: $*$ lgwang@nwpu.edu.cn   
[1] Bhattacharya, A., Friedland, S. and Peled, U.N., On the first eigenvalue of bipartite graphs, Electron. J. Combin., 2008, 15(1): R144.
[2] Bondy, J.A., Variations on the Hamiltonian theme, Canal. Math. Bull., 1972, 15: 57-62.
[3] Bondy, J.A. and Murty, U.S.R., Graph Theory, Grad. Texts in Math., Vol. 244, New York: Springer-Verlag, 2008.
[4] Butler, S. and Chung, F., Small spectral gap in the combinatorial Laplacian implies Hamiltonian, Ann. Comb., 2010, 13(4): 403-412.
[5] Chvátal, V., On Hamilton's ideals, J. Combin. Theory Ser. B, 1972, 12: 163-168.
[6] Edwards, C. and Elphick, C., Lower bounds for the clique and the chromatic number of a graph, Discrete Appl. Math., 1983, 5(1): 51-64.
[7] Erdos, P., Remarks on a paper of Pósa, Magyar Tud. Akad. Mat. Kutató Int. Kózl., 1962, 7: 227-229.
[8] Fan, Y.Z. and Yu, G.D., Spectral condition for a graph to be Hamiltonian with respect to normalized Laplacian, 2012: arXiv:1207.6824v1 [math.CO].
[9] Feng, L.H. and Yu, G.H., On three conjectures involving the signless Laplacian spectral radius of graphs, Publ. Inst. Math. (Beograd), 2009, 85(99): 35-38.
[10] Ferrara, M., Jacobson, M. and Powell, J., Characterizing degree-sum maximal nonhamiltonian bipartite graphs, Discrete Math., 2012, 312(2): 459-461.
[11] Fiedler, M. and Nikiforov, V., Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl., 2010, 432(9): 2170-2173.
[12] Gould, R.J., Advances on the Hamiltonian problem-A survey, Graphs Combin., 2003, 19(1): 7-52.
[13] Gould, R.J., Recent advances on the Hamiltonian problem: Survey III, Graphs Combin., 2014, 30(1): 1-46.
[14] Krivelevich, M. and Sudakov, B., Sparse pseudo-random graphs are Hamiltonian, J. Graph Theory, 2003, 42(1): 17-33.
[15] Liu, R.F., Shiu, W.C. and Xue, J., Sufficient spectral conditions on Hamiltonian and traceable graphs, Linear Algebra Appl., 2015, 467: 254-266.
[16] Lu, M., Liu, H.Q. and Tian, F., Spectral radius and Hamiltonian graphs, Linear Algebra Appl., 2012, 437(7): 1670-1674.
[17] Moon, J. and Moser, L., On Hamiltonian bipartite graphs, Israel J. Math., 1963, 1: 163-165.
[18] Nikiforov, V., Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput., 2001, 11(2): 179-189.
[19] Nikiforov, V., Some new results in extremal graph theory (English summary), In: Surveys in Combinatorics 2011,
London Math. Soc. Lecture Note Ser., 392, Cambridge: Cambridge Univ. Press, 2011, 141-181.
[20] Ning, B. and Ge, J., Spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra, 2015, 63(8): 1520-1530.
[21] Nosal, E., Eigenvalues of graphs, Master's Thesis, Calgary: University of Calgary, 1970.
[22] Ore, O., Arc coverings of graphs, Ann. Mat. Pura Appl., 1961, 55(4): 315-321.
[23] Yu, G.D. and Fan, Y.Z., Spectral conditions for a graph to be Hamilton-connected, Appl. Mech. Mater., 2013, 336/337/338: 2329-2334.
[24] Zhou, B., Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl., 2010, 432(2/3): 566-570.
[1] 文飞, 黄琼湘, 马小玲. 一类图的谱半径与特征多项式[J]. 数学进展, 2018, 47(1): 41-50.
[2] 崔淑玉,田贵贤. 图的各类矩阵表示的谱半径的界[J]. 数学进展, 2016, 45(5): 711-720.
[3] 苏莉,李红海,史明,张静. 倒距离矩阵的谱半径[J]. 数学进展, 2014, 43(4): 551-558.
[4] 韩苗苗,袁西英,李建喜. 关于连通度固定的图的拉普拉斯谱半径的一个注记[J]. 数学进展, 2014, 43(4): 578-580.
[5] 袁秀华. 具有k个悬挂点的n 阶单圈图的第二大谱半径的极图[J]. 数学进展, 2014, 43(1): 81-94.
[6] 陈萍, 何常香. 控制数固定的树的谱半径(英)[J]. 数学进展, 2012, 41(2): 225-232.
[7] 程素丽, 朱传喜. 随机凝聚算子的歧点(英)[J]. 数学进展, 2012, 41(1): 16-20.
[8] 袁西英;. 关于双圈图的拉普拉斯谱半径的注记(英文)[J]. 数学进展, 2010, 39(6): 703-708.
[9] 王春生;. 图的Laplace的谱半径[J]. 数学进展, 2009, 38(4): 427-432.
[10] 郭曙光;徐光辉;陈永高;. 直径为d的n阶树的谱半径[J]. 数学进展, 2005, 34(6): 683-692.
[11] 孙颀彧. 级联算法在Besov和Triebel-Lizorkin空间上的有界性和收敛性(Ⅱ)(英文)[J]. 数学进展, 2001, 30(1): 22-36.
Viewed
Full text


Abstract

Cited

  Discussed   
首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录


© 2015-2017 北京大学图书馆 .