Please wait a minute...
北京大学期刊网 | 作者  审稿人  编委专家  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展 - 2018, Vol. 47(1): 41-50
研究论文
一类图的谱半径与特征多项式
On the Spectral Radius and Characteristic Polynomial of a Graph

文飞1,2, 黄琼湘2, 马小玲2
WEN Fei1,2,*, HUANG Qiongxiang2, MA Xiaoling2

1. 兰州交通大学数理学院, 兰州, 甘肃, 730070;
2. 新疆大学数学与系统科学学院, 乌鲁木齐, 新疆, 830046
1. School of Mathematics and Physics,Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China;
2. College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China

出版日期: 2018-01-25
2018, Vol. 47(1): 41-50
DOI: 10.11845/sxjz.2016053b


PDF
[238 KB]
296
下载
345
浏览

引用导出
0
    /   /   推荐

摘要 通过考虑邻接矩阵的主向量给出了杠铃图的一个比较紧的上下界.此外, 借助文献《An Introduction to the Theory of Graph Spectra》中的一些重要关系式, 给出了该图的特征多项式和谱半径方程.
关键词 聚合谱半径特征多项式    
Abstract:In this paper, we obtain sharp lower and upper bounds for the spectral radius of a barbell graph by considering the principal vector. Moreover, we present the characteristic polynomial and spectral radius equations of the graph by some vital relational expressions in An Introduction to the Theory of Graph Spectra.
Key wordsgraph    coalescence    spectral radius    characteristic polynomial
PACS:  O157.5  
通讯作者: E-mail: $*$ Corresponding author: wenfei@mail.lzjtu.cn   
[1] Cvetković, D.M., Doob, M. and Sachs, H., Spectra of Graphs, 2nd Ed., Berlin: VEB Deutscher Verlag der Wissenschaften, 1982.
[2] Cvetković, D.M., Rowlinson, P. and Simić, S., Eigenspaces of Graphs, Encyclopedia Math.Appl., Vol.66, Cambridge: Cambridge Univ. Press, 1997.
[3] Cvetković, D.M., Rowlinson, P. and Simić, S., An Introduction to the Theory of Graph Spectra, London Math.Soc.Stud.Texts, Book 75, New York: Cambridge Univ.Press, 2010.
[4] Ellingham, M.N. and Zha, X.Y., The spectral radius of graphs on surfaces, J. Combin. Theory Ser. B>, 2000, 78(1): 45-56.
[5] Heydari, A. and Taeri, B., On the characteristic and Laplacian polynomials of trees, Linear Algebra Appl., 2010, 432(2/3): 661-669.
[6] Hoffman, A.J. and Smith, J.H., On the spectral radii of topologically equivalent graphs, In: Recent Advances in Graph Theory (Fielder, M. ed.), Prague: Academia, 1975, 273-281.
[7] Horn, R.A. and Johnson, C.R., Matrix Analysis, 2nd Ed., Cambridge: Cambridge Univ. Press, 2013.
[8] Hu, S.B., On the spectral radius of $H$-shape trees, Int. J. Comput. Math., 2010, 87(5): 976-979.
[9] Liu, B.L., On an upper bound of the spectral radius of graphs, Discrete Math., 2008, 308(23): 5317-5324.
[10] Liu, X.G. and Lu, P.L., Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear Algebra Appl., 2013, 438(8): 3547-3559.
[11] Lou, Z.Z., Huang, Q.X. and Yin, D.J., On the characteristic polynomial and the spectrum of a hexagonal system, MATCH Commun. Math. Comput. Chem., 2014, 72(1): 153-164.
[12] Ma, X.L. and Wen, F., On the spectral radius of ‡-shape trees, Czech. Math. J., 2013, 63(3): 777-782.
[13] Papendieck, B. and Recht, P., On maximal entries in the principal eigenvector of graphs, Linear Algebra Appl., 2000, 310(1/2/3): 129-138.
[14] Smith, J.H., Some properties of the spectrum of a graph, In: Combinatorial Structures and Their Applications, New York: Gordon and Breach, 1970, 403-406.
[15] Woo, R. and Neumaier, A., On graphs whose spectral radius is bounded by $\frac{3}{2}\sqrt{2}$, Graphs Combin., 2007, 23(6): 713-726.
[1] 张荣, 郭曙光. 最小Q-特征值的扰动定理的推广及其应用[J]. 数学进展, 2019, 48(5): 531-540.
[2] 王晶, 张作政, 黄元秋. 关于交叉数为2 的联图[J]. 数学进展, 2019, 48(4): 497-503.
[3] 杨超, 任韩. 关于3-正则图的消圈数和点荫度的一个注记[J]. 数学进展, 2019, 48(4): 504-508.
[4] 任秀秀,杨卫华. 几类特殊有向循环图的核[J]. 数学进展, 2019, 48(2): 137-144.
[5] 卜月华,王丽霞. 稀疏平面图的2-距离染色[J]. 数学进展, 2019, 48(2): 145-155.
[6] 唐高华, 李玉, 苏华东. 交换环上的形式矩阵环的零因子和零因子图[J]. 数学进展, 2019, 48(1): 99-109.
[7] 王茂群, 杨卫华. 原图是平面图的4-连通线图的哈密尔顿连通性[J]. 数学进展, 2019, 48(1): 29-34.
[8] 罗微微, 陈建学, 张华. p2阶非正规Cayley图的核[J]. 数学进展, 2018, 47(5): 641-648.
[9] 余梦蕾, 陈敏. 哈林图的弱边面染色[J]. 数学进展, 2018, 47(4): 509-516.
[10] 周仲旺. 完全二部图的全符号{k}-控制数和全符号{k}-色数[J]. 数学进展, 2018, 47(4): 517-524.
[11] 石慧苓, 高云澍. 标准多重图中点不交的重边四边形[J]. 数学进展, 2018, 47(3): 348-362.
[12] 卜月华, 叶飘飘. 围长至少为 $\mathbf{5}$ 的平面图的 $\mathrm{\mathbf{injective}}$-染色[J]. 数学进展, 2018, 47(3): 363-372.
[13] 邓兴超, 宋贺, 苏贵福, 田润丽. 小直径二连通外平面图的彩虹连通数[J]. 数学进展, 2018, 47(3): 373-382.
[14] 侯东东, 王燕, 曲海鹏. 具有循环极大子群$p$-群上的中心对称的正则凯莱地图[J]. 数学进展, 2018, 47(3): 383-387.
[15] 欧阳伦群,周琼,刘金旺,向跃明. 强${\pi}$ nil clean 环[J]. 数学进展, 2018, 47(2): 189-200.
Viewed
Full text


Abstract

Cited

  Discussed   
首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录


© 2015-2017 北京大学图书馆 .