Please wait a minute...
北京大学期刊网 | 作者  审稿人  编委专家  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展 - 2018, Vol. 47(1): 117-128
研究论文
具有相对迷向Landsberg曲率的球对称Finsler度量
Spherically Symmetric Finsler Metrics with Relatively Isotropic Landsberg Curvature

陈亚力1, 宋卫东2
CHEN Yali1,*, SONG Weidong2

1. 安徽师范大学环境科学与工程学院, 芜湖, 安徽, 241000;
2.安徽师范大学数学计算机科学学院, 芜湖, 安徽, 241000
1. College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China;
2. School of Mathematics and Computer Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China

出版日期: 2018-01-25
2018, Vol. 47(1): 117-128
DOI: 10.11845/sxjz.2016075b


PDF
[177 KB]
250
下载
280
浏览

引用导出
0
    /   /   推荐

摘要 得到了可以刻画具有相对迷向Landsberg曲率的球对称Finsler度量的方程. 作为它的应用, 构造了新的具有相对迷向Landsberg曲率的Finsler度量.
关键词 Finsler度量球对称相对迷向Landsberg曲率射影平坦    
Abstract:In this paper, we obtain a differential equation which characterizes a spherically symmetric Finsler metric with relatively isotropic Landsberg curvature. As its applications, we construct new examples of Finsler metric with relatively isotropic Landsberg curvature.
Key wordsFinsler metric    spherically symmetric    relatively isotropic Landsberg curvature    projectively flat
PACS:  O186.14  
通讯作者: E-mail: $*$ chenylwuhu@qq.com   
[1] Chen, Y.L. and Song, W.D., Spherically symmetric Finsler metrics with isotropic $E$-curvature, J. Math. Res. Appl., 2015, 35(5): 561-567.
[2] Cheng, X.Y., Mo, X.H. and Shen, Z.M., On the flag curvature of Finsler metrics of scalar curvature, J. London Math. Soc. (2), 2003, 68(3): 762-780.
[3] Cheng, X.Y., Wang, H. and Wang, M.F., $(\alpha, \beta)$-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen, 2008, 72(3/4), 475-485.
[4] Guo, E.L., Liu, H.F. and Mo, X.H., On spherically symmetric Finsler metrics with isotropic Berwald curvature, Int. J. Geom. Methods Mod. Phys., 2013, 10(10), 1350054, 13 pp.
[5] Hilbert, D., Mathematical problems, reprinted from Bull. Amer. Math. Soc. 8 (1902), 437-479, Bull. Amer. Math. Soc. (N.S.), 2000, 37(4): 407-436.
[6] Huang, L.B. and Mo, X.H., On spherically symmetric Finsler metrics of scalar curvature, J. Geom. Phys., 2012, 62(11): 2279-2287.
[7] Huang, L.B. and Mo, X.H., Projectively flat Finsler metrics with orthogonal invariance, Ann. Polon. Math., 2013, 107(3): 259-270.
[8] Huang, L.B. and Mo, X.H., On some explicit constructions of dually flat Finsler metrics, J. Math. Anal. Appl., 2013, 405(2): 565-573.
[9] Huang, L.B. and Mo, X.H., On some dually flat Finsler metrics with orthogonal invariance, Nonlinear Anal., 2014, 108(3): 214-222.
[10] Izumi, H., On $*P$-Finsler spaces, I, Mem. Defense Acad., 1976, 16(4): 133-138.
[11] Izumi, H., On $*P$-Finsler spaces, II, Mem. Defense Acad., 1977, 17(1): 1-9.
[12] Izumi, H., On $*P$-Finsler space of scalar curvature, Tensor} (N.S.), 1982: 220-222.
[13] Landsberg, G., Über die Totalkrümmung, Jahresber. Dtsch. Math.-Ver., 1907, 16: 36-46 (in German).
[14] Landsberg, G., Über die Krümmung in der Variationsrechnung, Math. Ann., 1908, 65(3): 313-349 (in German).
[15] Li, B.L. and Shen, Z.M., On a class of weak Landsberg metrics, Sci. China Math., 2007, 50(4): 573-589.
[16] Mo, X.H., Solórzano, N.M. and Tenenblat, K., On spherically symmetric Finsler metrics with vanishing Douglas curvature, Differential Geom. Appl., 2013, 31(6): 746-758.
[17] Mo, X.H. and Zhou, L.F., The curvatures of spherically symmetric Finsler metrics in $\mathbb{R}^n$, 2014, arXiv: 1202.4543v4 [math.DG].
[18] Rutz, S.F., Symmetry in Finsler spaces, In: Finsler Geometry (Seattle, WA, 1995), Contemp. Math., Vol. 196, Providence, RI: AMS, 1996, 289-300.
[19] Shen, Z.M., Non-Riemannian quantities, In: Differential Geometry of Spray and Finsler Spaces, Dordrecht: Springer Science+Business Media, 2001, 77-93.
[20] Tayebi, A. and Peyghan, E., On Douglas surfaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 2012, 55(3): 327-334.
[21] Yu, C.T. and Zhu, H.M., On a new class of Finsler metrics, Differential Geom. Appl., 2011, 29(2): 244-254.
[22] Zhou, L.F., Projective spherically symmetric Finsler metrics with constant flag curvature in $R^{n}$, Geom. Dedicata, 2012, 158(1): 353-364.
[23] Zhou, L.F., The spherically symmetric Finsler metrics with isotropic S-curvature, J. Math. Anal. Appl., 2015, 431(2): 1008-1021.
[1] 张纪平, 魏献祝. 射影平坦的Landsberg度量[J]. 数学进展, 2016, 45(3): 449-454.
[2] 宋卫东,朱静勇. 一类常旗曲率为1的射影平坦Finsler度量[J]. 数学进展, 2013, 42(5): 731-735.
[3] 邓义华. 复乘积流形上Berwald度量与强Kähler-Finsler度量的构造(英)[J]. 数学进展, 2012, 41(6): 723-731.
[4] 程新跃. 关于射影平坦Finsler空间(英文)[J]. 数学进展, 2002, 31(4): 337-342.
Viewed
Full text


Abstract

Cited

  Discussed   
首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录


© 2015-2017 北京大学图书馆 .