北京大学期刊网　|　作者　　审稿人　　工作人员 首页　  |  　关于　  |  　浏览　  |  　投稿指南　  |  　新闻公告
 数学进展 - 2018, Vol. 47(3): 348-362
 研究论文
 标准多重图中点不交的重边四边形 Vertex-disjoint Multiquadrilaterals in Multigraphs 石慧苓, 高云澍* SHI Huiling, GAO Yunshu 宁夏大学数学统计学院, 银川, 宁夏, 750021 School of Mathematics and Statistics, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China 收稿日期: 2016-08-30 出版日期: 2018-06-01 2018, Vol. 47(3): 348-362 DOI: 10.11845/sxjz.2016106b
 PDF [418 KB] 18 下载 84 浏览 引用导出

Abstract：A cycle of length 4 is called a quadrilateral and a multigraph is called standard if every edge in it has multiplicity at most 2. A quadrilateral with four multiedges is called heavy-quadrilateral. We prove that if the minimum degree of $M$ is at least $6k-2$, then $M$ contains $k$ vertex-disjoint quadrilaterals, such that $k-1$ of them are heavy-quadrilaterals and the remaining one is a quadrilateral with three multiedges, with only three exceptions.
Key wordsmultiquadrilateral    standard multigraph    mininum degree
 PACS: O157.5

 [1] Bang-Jensen, J. and Gutin, G.Z., Digraphs: Theory, Algorithms and Applications, London: Springer-Verlag, 2008.[2] Czygrinow, A., Kierstead, H.A. and Molla, T., On directed versions of the Corrádi-Hajnal corollary, European J. Combin., 2014, 42: 1-14.[3] Erdos, P., Some recent combinatorial problems, Technical Report, Bielefeld: University of Bielefeld, 1990.[4] Gao, Y.S., Zou, Q.S. and Ma, L.Y., Vertex-disjoint quadrilaterals inmultigraphs, Graphs Combin., 2017, 33(4): 901-912.[5] Randerath, B., Schiermeyer, I. and Wang, H., On quadriaterals in a graph, Discrete Math., 1999, 203(1/2/3): 229-237.[6] Wang, H., Proof of the Erdos-Faudree conjecture on quadrilaterals, Graphs Combin., 2010, 26(6): 833-877.[7] Zhang, D.H. and Wang, H., Disjoint directed quadrilaterals in a directed graph, J. Graph Theory, 2005, 50(2): 91-104.
 [1] 宋慧敏,刘桂真. 边覆盖临界图的一些性质[J]. 数学进展, 2004, 33(1): 96-102.
Viewed
Full text

Abstract

Cited

Discussed