Please wait a minute...
北京大学期刊网 | 作者  审稿人  编委专家  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展 - 2020, Vol. 49(1): 53-63
The Ground State Solution of Critical Hartree System

郑雨, 沈自飞
ZHENG Yu1,*, SHEN Zifei2,**

浙江师范大学数学与计算机科学学院, 金华, 浙江, 321004
College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China

收稿日期: 2018-12-22
出版日期: 2020-03-25
2020, Vol. 49(1): 53-63
DOI: 10.11845/sxjz.2018104b

[220 KB]

    /   /   推荐

摘要 本文考虑临界耦合的 Hartree 方程组 $$ \begin{cases} -\Delta u+\lambda u =\int_{\Omega}\frac{|u(z)|^{2_{\mu}^{\ast}} }{|x-z|^{\mu}}\mathrm{d}z|u|^{2_{\mu}^{\ast}-2}u +\beta v, &\quad x\in\Omega,\\ -\Delta v+\nu v =\int_{\Omega}\frac{|v(z)|^{2_{\mu}^{\ast}} }{|x-z|^{\mu}}\mathrm{d}z|v|^{2_{\mu}^{\ast}-2}v +\beta u, &\quad x\in\Omega, \end{cases} $$ 其中 $\Omega$ 是 $\mathbb{R}^N$ 中带有光滑边界的有界区域, $N\geq3,$ $\lambda,\,\nu$ 是常数, 且满足${\lambda,\nu}>-\lambda_1(\Omega),\,\lambda_{1}(\Omega)$ 是$(-\Delta,H^1_0(\Omega))$ 的第一特征值, $\beta>0$是耦合参数, 临界指标$2_{\mu}^{\ast}=\frac{2N-\mu}{N-2}$来源于Hardy-Littlewood-Sobolev不等式, 利用变分的方法证明了临界Hartree方程组基态正解的存在性.
关键词 Hartree方程组Brezis-Nirenberg问题Hardy-Littlewood-Sobolev不等式临界指标    
Abstract:In this paper, we are interested in the following critical coupled Hartree system $$ \begin{cases} -\Delta u+\lambda u =\int_{\Omega}\frac{|u(z)|^{2_{\mu}^{\ast}} }{|x-z|^{\mu}}\mathrm{d}z|u|^{2_{\mu}^{\ast}-2}u +\beta v &\quad \mbox{in} \Omega,\\ -\Delta v+\nu v =\int_{\Omega}\frac{|v(z)|^{2_{\mu}^{\ast}} }{|x-z|^{\mu}}\mathrm{d}z|v|^{2_{\mu}^{\ast}-2}v +\beta u &\quad\mbox{in} \Omega, \end{cases} $$ where $\Omega\subset\mathbb{R}^N\,(N\geq3)$ is a smooth bounded domain, $\lambda, \nu>\lambda_{1}(\Omega)$ are constants, $\lambda_{1}(\Omega)$ is the first eigenvalue of $(-\Delta, H^{1}_{0}(\Omega))$, $\beta>0$ is a coupling parameter, $2_{\mu}^{\ast}=\frac{2N-\mu}{N-2}$ due to the Hardy-Littlewood-Sobolev inequality. By using the variational method, the existence of positive ground state solution of this system is proved.
Key wordsHartree system    Brezis-Nirenberg problem    Hardy-Littlewood-Sobolev inequality    critical exponent
PACS:  O177.91  
通讯作者: E-mail: *; **   
[1] Akhmediev, N. and Ankiewicz, A., Partially coherent solitons on a finite background, Phys. Rev. Lett., 1999, 82(13): 2661-2664.
[2] Ambrosetti, A. and Colorado, E., Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc. (\textit{2}), 2007, 75(1): 67-82.
[3] Bartsch T., Wang Z.Q. and Wei J.C., Bound states for a coupled Schödinger system, J. Fixed Point Theory Appl., 2007, 2(2): 353-367.
[4] Bergé, L. and Couairon, A., Nonlinear propagation of self-guided ultra-short pulses in ionized gases, Phys. Plasmas, 2000, 210(7): 210-230.
[5] Bhattarai S.,On fractional Schrödinger systems of Choquard type, [J]. Differential Equations, 2017, 263(6): 3197-3229.
[6] Chen Z.J., Lin C.S. and Zou W.M., Sign-changing solutions and phase separation for an elliptic system with critical exponent, Comm. Partial Differential Equations, 2014, 39(10): 1827-1859.
[7] Chen, Z.J. and Zou, W.M., Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 2012, 205(2): 515-551.
[8] Chen, Z.J. and Zou, W.M., Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case, Calc. Var. Partial Differential Equations, 2015, 52(1/2): 423-467.
[9] Dalfovo F., Giorgini S., Pitaevskii L.P. and Stringari S., Theory of Bose-Einstein condensation in trapped gases, Rev. Modern. Phys., 1999, 71(3): 463-512.
[10] Dancer, E.N. and Wei, J.C., Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction, Trans. Amer. Math. Soc., 2009, 361(3): 1189-1208.
[11] Elgart, A. and Schlein, B., Mean field dynamics of boson stars, Comm. Pure Appl. Math., 2007, 60(4): 500-545.
[12] Esry B.D., Greene C.H., Burke J.P.Jr. and Bohn, J.L., Hartree-Fock theory for double condensates, Phys. Rev. Lett., 1997, 78(19): 3594-3597.
[13] Gao, F.S. and Yang, M.B., On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 2018, 61(7): 1219-1242.
[14] Guo Z.Y., Luo S.P. and Zou W.M., On critical systems involving fractional Laplacian, J. Math. Anal. Appl., 2017, 466(1): 681-706.
[15] Ikoma, N. and Tanaka, K., A local mountain pass type result for a system of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 2011, 40(3/4): 449-480.
[16] Lenzmann E.,Uniqueness of ground states for Hardy-Littlewood-Sobolev Hartree equations, Anal. PDE, 2009, 2(1): 1-27.
[17] Lenzmann, E. and Lewin, M., On singularity formation for the $L^{2}$-critical boson star equation, Nonlinearity, 2011, 24(12): 3515-3540.
[18] Lieb, E.H. and Loss, M., Analysis, Graduate Studies in Mathematics, Vol. 14, Providence, RI:, AMS, 2001.
[19] Lin, T.C. and Wei, J.C., Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005, 22(4): 403-439.
[20] Lin, T.C. and Wei, J.C., Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, [J]. Differential Equations, 2006, 229(2): 538-569.
[21] Lin, T.C. and Wei, J.C., Ground state of $N$-coupled nonlinear Schrödinger equations in $\mathbb{R}^n$, $n\leq3$, Commun. Math. Phys., 2005, 255: 629-653.
[22] Lin, T.C. and Wei, J.C., Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations, Nonlinearity, 2006, 19(12): 2755-2773.
[23] Litvak A.G.,Self-focusing of powerful light beams by thermal effects, JETP Lett., 1966, 4: 230-232.
[24] Liu, Z.L. and Wang, Z.Q., Multiple bound states of nonlinear Schrödinger systems, Commun. Math. Phys., 2008, 282(3): 721-731.
[25] Maia L.A., Montefusco E. and Pellacci B., Positive solutions for a weakly coupled nonlinear Schrödinger system, [J]. Differential Equations, 2006, 229(2): 743-767.
[26] Menyuk C.R.,Nonlinear pulse propagation in birefringence optical fiber, IEEE J. Quantum Electron., 1987, 23: 174-176.
[27] Menyuk C.R.,Pulse propagation in an elliptically birefringent Kerr medium, IEEE J. Quantum Electron., 1989, 25(12): 2674-2682.
[28] Montefusco E., Pellacci B. and Squassina M., Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 2008, 10: 47-71.
[29] Peng S.J., Shuai W. and Wang Q.F., Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, [J]. Differential Equations, 2017, 263(1): 709-731.
[30] Pomponio A.,Coupled nonlinear Schrödinger systems with potentials, [J]. Differential Equations, 2006, 227(1): 258-281.
[31] Sirakov B.,Least energy solitary waves for a system of nonlinear Schröinger equations in $\mathbb{R}^{N}$, Commun. Math. Phys., 2007, 271(1): 199-221.
[32] Wang, J. and Shi, J.P., Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calc. Var. Partial Differential Equations, 2017, 56(6): 168, 36 pp.
[33] Wei, J.C. and Weth, T., Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Rational Mech. Anal., 2008, 190: 83-106.
[34] Willem M.,Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, Vol. 24., Boston, MA: Birkhäuser Boston, 1996.
[35] Yang M.B., Wei Y.H. and Ding Y.H., Existence of semiclassical states for a coupled Schrödinger system with potentials and nonlocal nonlinearities, Z. Angew. Math. Phys., 2014, 65(1): 41-68.
[1] 刘丙辰,李锋杰,郑斯宁. 一类反映扩散系统的不同时爆破临界指标 (英)[J]. 数学进展, 2011, 40(5): 531-536.
Full text



首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录

© 2015-2017 北京大学图书馆 .