Please wait a minute...
北京大学期刊网 | 作者  审稿人  编委专家  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展 - 2020, Vol. 49(4): 481-496
环${\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\cdots+u^{k-1}\mathbb{F}_{p^m}}$ ${(u^k=0)}$上基于定义集的几类线性码
Several Classes of Linear Codes from Defining Sets over ${\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\cdots+u^{k-1}\mathbb{F}_{p^m}\ (u^k=0)}$

朱灿泽1, 方颖珏1, 廖群英2
ZHU Canze1, FANG Yingjue1, LIAO Qunying2,*

1.深圳大学数学与统计学院, 深圳, 广东, 518060;
2.四川师范大学数学科学学院, 成都, 四川, 610066
1. School of Mathematics and Statistics, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China;
2. School of Mathematical Sciences, Sichuan Normal University, Chengdu, Sichuan, 610066, P. R. China

收稿日期: 2019-05-31
出版日期: 2020-08-11
2020, Vol. 49(4): 481-496
DOI: 10.11845/sxjz.2019058b

[256 KB]

    /   /   推荐

摘要 本文研究了有限链环$\mathcal{R}_k=\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\cdots +u^{k-1}\mathbb{F}_{p^m}(u^k=0)$ 上基于定义集的线性码的李权重分布, 其中$p$是奇素数,$m,k$是正整数. 通过使用特征和工具,我们计算出上述线性码在Gray映射下的完备权重计数器. 此外,还提出了一类满足Griesmer界的常数权重码,它可用于构造满足LVFC界限的最优常维码, 本文推广了文献[IEEE Trans. Inf. Theory, 2015, 61(11): 5835-5842]和[Des. Codes Cryptogr., 2019, 87(1): 15-29]的主要结果.
关键词 线性码有限链环完全权重计数器特征和    
Abstract:In this paper, we study the Lee-weight distribution of linear codes from defining sets over the finite chain ring $\mathcal{R}_k=\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\cdots+u^{k-1}\mathbb{F}_{p^m}\ (u^k=0)$, where $p$ is an odd prime, $m$, $k$ are positive integers. We establish the complete weight enumerator for the images of these linear codes under the Gray map explicitly by using character sums over finite fields. Furthermore, a class of constant weight codes achieving the Griesmer bound which can be used to construct optimal constant composition codes meeting the LVFC bound is obtained, which generalizes the main results in [IEEE Trans. Inf. Theory, 2015, 61(11): 5835-5842] and [Des. Codes Cryptogr., 2019, 87(1): 15-29].
Key wordslinear code    finite chain ring    complete weight enumerator    character sums
PACS:  O157.4  
通讯作者: E-mail: *   
[1] Anderson R., Ding C.S., Helleseth T. and Kløve T., How to build robust shared control systems, Des. Codes Cryptogr., 1998, 15(2): 111-124.
[2] Calderbanka, R. and Goethals, J.-M., Three-weight codes and association schemes, Philips J. Res., 1984, 39: 143-152.
[3] Carlet C., Ding C.S. and Yuan J., Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 2005, 51(6): 2089-2102.
[4] Ding, K. and Ding, C.S., Binary linear codes with three weights, IEEE Commun. Lett., 2014, 18(11): 1879-1882.
[5] Ding, K. and Ding, C.S., A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 2015, 61(11): 5835-5842.
[6] Ding, C.S. and Wang, X.S., A coding theory construction of new systematic authentication codes, Theor. Comput. Sci., 2005, 330(1): 81-99.
[7] Gao, J. and Ma, F.H., Some results on quadratic residue codes over the ring $\mathbb{F}_{p^m}+ v\mathbb{F}_{p^m}+ v^2 \mathbb{F}_{p^m}+ v^3 \mathbb{F}_{p^m}$, Discrete Mathematics, Algorithms and Applications, 2017, 9(3): 1750035, 9 pp.
[8] Hammons A.R.Jr., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A. and Solé, P.: The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inf. Theory, 1994, 40: 301-319.
[9] Li C.J., Bae S.H., Ahn J.Y., Yang S.D. and Yao Z.A., Complete weight enumerators of some linear codes and their applications, Des. Codes Cryptogr., 2016, 81(1): 153-168.
[10] Lidl, R. and Niederreiter, H., Finite Fields, 2nd Ed., Cambridge: Cambridge University Press, 1997.
[11] Liu, H.B. and Liao, Q.Y., Several classes of linear codes with a few weights from defining sets over $\mathbb {F} _p+ u\mathbb {F} _p$, Des. Codes Cryptogr., 2019, 87(1): 15-29.
[12] Liu H.B., Liao Q.Y. and Wang X.F., Complete weight enumerator for a class of linear codes from defining sets and their applications, J. Sys. Sci. Compl., 2018: 1-20.
[13] Luo Y., Fu F.W., Vinck A.J.H. and Chen, W., On constant-composition codes over $Z_p$, IEEE Trans. Inf. Theory, 2009, 49(11): 3010-3016.
[14] Shi M.J., Liu Y. and Solé P., Optimal two-weight codes from trace codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Commun. Lett., 2016, 20(12): 2346-2349.
[15] Shi M.J., Luo Y. and Solé P., Construction of one-Lee weight and two-Lee weight codes over $\mathbb{F}_{p^m}+v\mathbb{F}_{p^m}$, J. Sys. Sci. Compl., 2017, 30(2): 484-493.
[16] Yang, S.D. and Yao, Z.A., Complete weight enumerators of a family of three-weight linear codes, Des. Codes Cryptogr., 2017, 82(3): 663-674.
[17] Yang S.D., Yao Z.A. and Zhao C.A., A class of three-weight linear codes and their complete weight enumerators, Cryptogr. Commun., 2017, 9(1): 133-149.
[1] 田清. $\frac{L'}{L}(1,\chi)$与短区间上特征和函数的均值问题[J]. 数学进展, 2020, 49(2): 172-178.
[2] 李建, 廖群英. 环$R=\mathbb{F}_{3}+v\mathbb{F}_{3}\, (v^{2}=1)$上线性码的深度谱[J]. 数学进展, 2018, 47(4): 635-640.
[3] 蒲可莉,廖群英. 环,R=Fq+uFq ,(u2=0),上线性码的深度分布及深度谱[J]. 数学进展, 2014, 43(1): 57-63.
[4] 张小蹦,刘华宁. 广义伯努利数、广义Kloosterman和与特征和[J]. 数学进展, 2013, 42(5): 665-675.
Full text



首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录

© 2015-2017 北京大学图书馆 .