Please wait a minute...
北京大学期刊网 | 作者  审稿人  编委专家  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展
研究论文
关于球面中具常数量曲率的紧致极小超曲面的一个注记

潘养廉

复旦大学数学研究所

收稿日期: 1983-03-25
出版日期: 1983-01-15

44
浏览

引用导出
0
    /   /   推荐

摘要  设M是单位球面S~(n+1)中的一个n维紧致极小超曲面.k表示它的第二基本形式,S表示h的长度的平方.由Gauss方程可知S是内在的且由下式决定 S=n(n—1)—R,这里R是M的数量曲率,由此可知S为常数的充要条件是M具常数量曲率. 估计S的值域是一个十分引人注意的问题.Naoya Doi在[1]中给出了一个新的积分不等式,利用这一不等式,他证明了:若M的截面曲率以1为上界,则M是大球面或S≥2(2n—3).本文用另一简便方法证明了上述积分不等式并且改进了Naoya Doi的
No related articles found!
Viewed
Full text


Abstract

Cited

首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录


© 2015-2017 北京大学图书馆 .