Please wait a minute...
北京大学期刊网 | 作者  审稿人  编委专家  工作人员

首页   |   关于   |   浏览   |   投稿指南   |   新闻公告
数学进展
研究论文
RESEARCH ANNOUNCEMENTS——The Construction of Eigenvalue Problem Equivalent to Multivariate Polynomial System and the Groebner Basis
RESEARCH ANNOUNCEMENTS——The Construction of Eigenvalue Problem Equivalent to Multivariate Polynomial System and the Groebner Basis

冯果忱,吴文达,黄铠

Jilin University, Changchun, 130023, Jilin, P.R.C.,Jilin University, Changchun, 130023, Jilin, P.R.C.,Beijing Municipal Computer Center, Beijing, 100005, P.R.C,
(1) Jilin University, Changchun, 130023, Jilin, P.R.C.(2) Beijing Municipal Computer Center, Beijing, 100005, P.R.C, Feng Guochen Wu Wenda Huang Ka

收稿日期: 1993-06-25
出版日期: 1993-06-25

53
浏览

引用导出
0
    /   /   推荐

摘要  In this paper we will show that one cau build up a joint eigenvalue problem eq-uivalent to the. given system. By this way, finding the solutions of the given systemis equivalent to finding all eigenvalues and eigenvectors of one matrix or matrix pen-cil. For the special case that the system has finite isolated solutions, we can obtainall solutions through computing the eigenvalues and eigenvectors of a matrix whichcan Le obtained by Gauss-Jordan elimination. Furthermore, we also find that one canget Groebner Basis for the ideal geuerated by the given system iu this way. For any polynomial f(x)∈K[x_1,x_2,…,x_n],f(x) can be written as
No related articles found!
Viewed
Full text


Abstract

Cited

首页 · 关于 · 关于OA · 法律公告 · 收录须知 · 联系我们 · 注册 · 登录


© 2015-2017 北京大学图书馆 .