北京大学期刊网　|　作者　　审稿人　　编委专家　　工作人员 首页　  |  　关于　  |  　浏览　  |  　投稿指南　  |  　新闻公告
 数学进展
 研究论文
 点是G_(δ~-)集的∑~*-空间的构成定理(英文) The Decomposition Theorem for Σ*-spaces With Gδ-Points 彭良雪 PENG Liang-xue 北京工业大学应用数理学院 北京, 100022 (College of Applied Science, Beijing University of Technology, Beijing, 100022, P. R. China 收稿日期: 2004-02-25 出版日期: 2004-02-25
 107 浏览 引用导出
0
/   /   推荐
 摘要 在林寿与我最近合作的一篇文章中指出了∑*-空间的构成定理需重新考虑.本文就是要证明在空间X的每个点是Gδ-集的条件下该构成定理是成立的,所得的结论是: X是T1且每个点是Gδ-集的∑*-空间,如果f:X→Y是闭的满连续映射,则在Y中有一σ-闭离散子空间Z,使得对每个y∈Y\Z,f-1(y)是X的ω1-紧子空间.为得到该主要结果,本文证明了若空间X是每个点是Gδ-集的次亚紧空间.则X中的每个闭离散子集是X中的Gδ-集. 关键词 ： ∑*-空间,  强∑*-空间,  次亚紧空间,  ω1-紧,  σ-离散 Abstract：Lin and I pointed out that the decomposition theorem for Σ*-spaces should be considered again recently. In this paper I show that the decomposition theorem is true if every point of the space X is also a Gδ-set of X. The main conclusion is: If space X is a T1, Σ*-space with every point of X is a Gδ-set, and f : X→Y is a closed onto map, then there is a σ-closed discrete subspace Z of Y, such that f-1(y) is an wwww-compact subspace of X for every y ∈ Y \ Z. In getting the main conclusion I show that every closed discrete subset of a space X is a Gδ-set of X, if X is a submetacompact space and every point of X is a Gδ-set of X. Key words： strong Σ *-space    submetacompact space    ω1-compact    δ-discrete
 No related articles found!
Viewed
Full text

Abstract

Cited